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ORBIT MODELLING
FOR SATELLITES USING THE

NASA PREDICTION BULLETINS

N. L. Bonavito
D. W. Koch
G. A. Maslyar

J. C. Foreman

ABSTRACT

For some satellites the NASA Prediction Bulletins are the only
means available to the general user for obtaining orbital information.
This paper provides the user with a computational interface between
the information given in the NASA Prediction Builetins and stancard
orbit determination programs. Such an interface is necessary to ob-
tain accurate orbit predictions. The theoretical considerations and
their computational verification inthis interface modelling are presented
in detail. This analysis was performea in conjunction with satellite
aided search and rescue position location experimenis where accurate
orbits of the Amateur Satellite Corporation (ANMSAT) OSCAR-6 and

OSCAR-7 spacecraft are a prerequisite.
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ORBIT MODELLING FOR SATELLITES

USING THE NASA PREDICTION BULLETINS

[. INTRODUCTION

Recent feasibility experiments with the Radio Amateur Satellites OSCAR-6
and -7 indicate that a crucial factor in these experiments involving distress
beacon location accuracy is the method of orbit acquisition and prediction utilized
by the NASA Prediction Bulletins,* As part of a proposed satellite aided Search
and Rescue mission (SAR), the beacon latitude and longitude is to be determined

by using information from individual passes of Doppler frequency shift measure~

ments in combination with satellite orbital data (Reference 1). The OSCAR orbital

data is determined by use of a simplified generalized perturbations program
(SGP), ir conjunction with tracking data provided by the Space Defense Center
network (Reference 2), The SGP utilizes a simplified first order Kozai analytic

orbit theory in.order to calculate position and velocity coordinates of the OSCAR
satellites.

In this paper, the expression for the semi-inajor axis of the orbit is
rewritten co as to include the full first order short period perturbations. Thcse
cffects are then introduced irto the posifion and velocity magnitudes, thus re-
sctting the sidereal dlock, making the epoch vectors of the tate commensurate
with those obtained from the standard Kozai and Brou | ‘iheori.es.

An incompleie description of the second order short period perturbation in

the semi-major axis, produces no significant error in the Kozai mean

*Sce “Explanation of The NASA Prediction Bulletins,” distributed by Operations Center Branch, Code
512, NASA Goddard Space Flight Center, Greenbelt, Md. 20771 (February 1974).
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mean-motion when the SGP orbit constants are chosen to procuce a hest fit to_
observations. However, the neglect of any terms of the first order, and often
ir the second order, gives a wrong instantaneous mean moticn for the start of
a numerical integraticn, which thén propagates as a secular like error in time.
This requirement for the semf—major axis is peculiar to the cperation of using
osculatiﬁg elements to transfer the orbit computations to upecial perturbations,
or even to another general perturbation.

At present, there is a need at the National Aeronattics and Space Adminis-
tration t‘br a program which will reconcile the SGP results with the approach of
the more sophisticated orbit theories; thereby permitting simultaneously accu-
rate orbit determination and distress beacon location for considerably longer
prediction arcs.

Section II describes the SGP model and corﬁpa.res it to that of Brouwer and
Kozai. Modifications to SGP are made in Section IIl. Sections IV and V describe
the results and conclusions of calculations and comparisons of the modified SGP

with the Space Defense Center SGP and the Brouwer theory.

II. THE MODEL

Brouwer, (Reference 3) and Kozai, (Reference 4) have described the motion

~of an artificial Earth satellite without air drag.

In the approach of Brouwer, the equations of motion of a small mass at-

tracted by a spheroid are written as:

d?x du d?y _ 3y d?’z 3y
dt 2 ex"' dt2 9y’ 2 9z’
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with
#kz l»‘-k4
U= E+v——=(1-3sin?8)+ T (1~10sin2p+ B s
r 3 rS 3

Here, the equatorial plane of the spheroid is taken as the Cartesian xy plane; g
is the latitude, and if M is the mass of the spheroid and k the Gaussian constant,

u = k?*M. The Delaunay variables are introduced:

Loz (u a)"‘, f = mean anomaiy,
- 2% -
G = L(1-e%)", g = argument of the pericenter,
H = Gceos I, h = longitude of ascending node, (2)

where a and e are the osculating semi-major axis, eccentricity and inclination
of the orbital plane with the orbital plane respectively. With these, the equa-

tions of motion bhecome,

dL _ 2F dC _ _ 3F
dt e’ dt JL’
9—6 = E—F- d-—g - - EE.
dt 3g’ dt 3G’
dH _ ?F gh _ _3F
dt sh' dt £

2 utk 2\ .3
2L LS 2 26G%*/;

F is the Hamiltonian.

3 3 H2\al
‘5 - '2‘"’2)':3 cos (2¢g + 2f)]. 3)
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The problem is solved by considering a canonical transformation from the
variables L, G, H, ¢, g, h to a new set L', G*, H', ¢', g', h', and from the old to
a new Hamiltonian F* (L', G', H', ', ¢ , h'). This is accomplished with the aid
of a determining function S (L', G', H', ¢, g, h), which is chosen in such a manner
that ¢* is not present in F*, while g' is permitted to appear. Consequently, L'
and H' will be constants, and the system is reduced to one of one degree of

freedom:
d&’ _ °F  dg' | _ 3F | @)

dt 5_g—" dt 9G*”

After this system is solved, f' and h’' are obtained by quadratures from

e | _9F  dn'_ 2F )
dt L' dt OH'’

The determining function is obtained by a method used by von Zeipel (Ref-
erence 5), in a qualitative study of the motions of minor planets. The final

equations of motion are:

als \ 8'3
a = a"{1+y,|(-1+ 367 e n-:’) + 3(1 - 6% 3 cos (2g' + 2f")
“\r r
2 n3
- /. ayf B -
e = "+ 8,e+ 2e,,{72[(-1+ 36 )((l_,3 -7 3)

”3

+ 3 - 92)(9—' - n“)cos(Zg' + 2f')]

r's
-7 (1= 92)[3(3' cos (2g" + f') + e"cos (2¢" + 3f’>]} ’

D e S S S
\ . A H ) \ . 17 S .t M
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1"+ 8, T+  v!6(1-6%"[3cos (2g + 2f') + 3e"cos (2¢' + ')

2

+ e"cos (2¢g' + 3f')]

r'? r

2 "2 "
e - o 72’{2(—1 + 362)(3—— 7+ 2 l)sin £’

- "2 ¥
+3(1- 92)[(— a,z i l)sin (2g’' + £')

r

+a_"3_2+£z+_1. : 2¢' + 3¢’
PR 3 /50 (28 )

: (6)
gl + 12 .)/l 2(_1 ¥ 302) a_"_z. 2 + E:- + 1 Sin f'-
4en 2 r'2 n l" a

n2 "
s30-6)|[- 3= 2- % +1)sin(2g’ + £
r'? r

+r‘2‘q+r,+351n(2g+3f)

1
4

+ 72'{6 (14562 (f'-0'+e”sinf') + (3-562)[3 sin (2g'\» 2f"

+3e"sin(2g' + ') + e"sin(2¢g" ¢ 3f')]}

[ A S,
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| |
l i
9
4
? 1 [ ’ ’ " . ’ . .
h = h' - '2-’)’29[5(1' - f' +e"sinf') - 3sin(2g’ +2f")
-3e"sin(2g’ + ')~ e"sin (2¢g" + 3f')].
f', r' are to be computed from
E' - e"sinE" @ ¢’
14
1., _(1te 1,
tan2f —(l-c) tan2E
a" _ 1+e"cosf’
r' 1-e"2
or
! 1
— sinf’ = (1- e"2)'é sin E’
— oosf’' = cos E' - e
_r_: = 1~ e" cos E
a
a2 Y ks
Here, f is the true anomaly, n = (1 - €'2)%, 8 = cos 1", 7, = —_;,72‘ =y, 74,
a

and k, is related to the coefficient of the Earth's second zonal harmonic J,, by

the expression,

R?2
ky = J2 5. (1
where R, is the Earth's equatorial radius.
[ . i f 1 ; ~
- \' W ,'/ A l‘ K i, !
= [ i , . | ] \
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The quantities in brackets are of shcrt period, while a”, e”, and I” are
secular in nature. Secular and long period terms of the mean anomaly, argu-
ment of perigee, and longitude of the node are contained in €', g' and h', while
long period variations in eccentricity and inclination are given by 5,e and 3,1
respectively. The periodic terms, both long and short, are developed tc 0 (kz).
The secular motions are obtained to 0 (k?).

For the calculation of the coordinates at any time, the complete values of

e and ¢ should be used for the solution of Kepler's equation,

E-esinE = { (8)

and subsequently, the radius vector r, and the true anomaly f which may then be

used in the formulas:

x = r[cos(g+f)cosh-sin(g+f)sinhcosI]
y = r[cos(g+f)sinh+sin(g+f)coshcosl]
2z = rsinfg+ f)sinlI. (9)

In a similar method by Kozai, perturbations of six orbital elements of a
close Earth satellite moving in the gravitational field are obtained as functions
of mean orbital elements and time. No assumptions are made about the order
of magnitude of eccentricity and inclination. It is assumed however, that the
density distribution of the Earth is symmetrical with respect to the axis of
rotation. Also, the coefficient of the second harmonic of the potential is taken
to be a small quantity of the first order, while those of the third and fourth
harmonics are of the second order. In addition, the expression of the semi-

major axis contains no long periodic terms.
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The results include periodic perturbations of the first order, and secular

perturbations up to thé second order:

a = atda_,
e = etde,
i = 1 +di
s
w = @y + wt
1] -
Q = Gy + Q¢
M = M, tnt

3t

i

AZ 3 : .
+ T on, (l—;sinzi) 1-e?, (11)

[XCE .,
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where «;, O, and M, are meaﬁ values at the epoch, that is, the initial values,
from which periodic perturbations have been subtracted. n, is the unpercurbed
mean motion, which is related to the unperturbed semi-major axis a; by

ntad = GM.

2 43
[ ]

Kozai chose to adopt as a mean value of the semi-major axis not a  but

Al 3 -
= ao{l-—\l-—sinzi Vi-e2t

o)

p? 2

so that the following relalion holds:

e A, 3
n?a? = GM 1——; 1—;sin2i V1 - e2}. {12)

P

The transformation from Kepler elements to Delaunay’'s canonical ones is:

o
i
ﬁ
Y
(2]

i

Vica(l - e%), H = l/,ua(l-e2) cos i,

~
il
=
n
i
£
=
H

Q, (13)

. where x = GM, G is the gravitational coastant and M is the mass of the Earth.
A, is taken to be of the first order of small quantities and is equal to 3 k.2 of
Brouwer above. The quéntity p = a(l ~ e?). Also, e and 1 are mean values
with respect to M and &, and «y, Q,, and M, are also initial values from which
periodic perturbations have been subtracted.

The subscripted ¢ quantities are long period perturbations, and are given

by:



s

d0, =

13
— . By esin?i . [14-15'sin?i Ay 18.21 sin?i | )
L4 . - M QOSs w
f P2 4(4.55in?1) 6 L2 7
L3 A
- ~— Sini Sinw
4 A,a !
2
. Ay e2sin 2i 14-15 sirn2i  As 18-21 sin?i
dls‘—'; - - - L T . ) cos 2w
p? 8(4-5 sin?i) L 6 A 7
3 A .
- . 7 ecosi Sinw,
& A2p
w5 - Ay eZcosi 7-15 sin? i A 9-21 sin?;
*  p? 2(4-5sin?i) 6 Al 7
S sin?i 14-15 sin?i As 18-21 sin?i) | |
+ - — —_——— sin 2w
2(4-5S sin?i) 6 A7 7
+:3_ f_._i_ cos i
4 Ajp sini € cos @,
(14)

—_— 3 A
dw, - — — sin? i sin 2w
8 p?

A, 1 [14-15 sin?i
p2 | 4-5sin?j 1 24

sin? i - e?

2B-158 sin? i + 135sin®i

[

48
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b in

s (18-21 sin? i )
- _ S
A; \ 2

i-.

14-15 sin2i _ A

, 3-210 sin?i + 189 sint i

S e e,

e

56

e?sin?i (13-15 sin? i) <

(4-5 sin? i)’

18 - 21 sin?

: \} sin 2w
/

)

: -

24 A2 28

, 3 A sin?i- e?eos?i 1
4 Azp sin i e

14

COos w.

The barred quantities are those short periodic perturbations with respect

to the mean anomaly,

- A_z. s 2. 1-e?
sin® 1
p2 6e

6 p?

I S—
= -Ejsm21ms2vcos2w,
o
lAz

= = = — cosi cos 2v sin 2w.

v } sin 2w,

1 .
" COS 2v> + g cos? i cos

(15)
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Here,
—e Y
cos jv = | —————] (1 +j F1-e?),
(l* V1-eYy

where j = 1, 2, ... . The mean values of perturbations are not zero, except for
the semi-major axis.
The quantities (! and & for the node and argument of perigee account for

secular changes through the second order:

A 2
0 = ~“'ﬁcosrl‘l+_{‘z‘+%‘-2)/l—e2

5 s — Ay 12-21 sin? i 3
- cin?2if o - 2 e2- ~ .2 . . _<-<elsin 1 2 2
sin i<3 4 e 3 ‘yl 'e )}] o ncos i 14 1+ , ell,
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where p = a (1 - €2), and 1 and e are mean values of the inclination and the
eccéntricity over all pcriods. The leading terms of these expres.sions account
for t_he first order secular v;u'iati.ons in 0 and w. Both the long period and
secular perturbations are taken through second order.

The short periodic terms contain terms only of the first order however.

The results for the six elements are as follows:

A 3 a\V
o S8 ) 0 s ]

_1- e? Az 1 3 . 2 - ay’ 2~3/2}
de, ~ pa 2 [3(1- 2sxn i ; - (1 - e®) |
1 [aV .
+ = (—) sin?i cos 2(v + w)]
2 \r
sin i ﬁf{ 2 + + + 2 + i 3v +
26 ap cos 2(v + w) + e cos (v ) 3 e cos (3v + w)
A, 5 , .
do = — 112~ = sin?i) (v-M+ e sinv)
p? 2
3 1] 1 1 e . .
- e . 2- — R — 2 . — . — .
+(l 2's:1n 1){e(1 4e)smv+ 25m2v+ 12 sm3v}
1 [ 1 15
PR AP IR R A I 2y o + 2
e {4 sin® i (2 6 sin 1) e } sin (v w)
- e - /./”/ / —

e o o
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1 S
+ % sin?i sin (v = 2w) - *2‘(1-' ‘ESin2 i) sin 2(v 1 w)

1
{-173 sin?i - '6“(1 - 'g sin? i) e’} sin (3v + 2w)

3
+ < sin? i sin (4v + 20) + —;‘;-sin’i sin (5v + 2w)]
(17)
1 A e
— == gin 2idcos 2(v +w) + e cos (v + 2w) + T cos (3v + 2w) ¢,
4 p? 3
(]
A, ) 1
-— cosifv-M+esinv ~ =~ sin2(v +w)
p? 2

- -;— sin (v + 2w) - -z—sin (Bv + 2w)

A, : 2 2
= Wi-e2 [~ (1— % sin? i){(l-%—)sinv + —;— sin 2v +';—2 sin 3v}

+ si 3i{l 5 o2 sin(v+2w)—ﬁcin(v-2w)
sin Y 1+.4e T ( .

7 e?\ . 3 . e? | .
Y (l - 'ﬁ)sm (v + 20) - -8“ e sin (4v + 2w) - 16 Sin {Sv ¢ 2co)”

-
S~
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With use of Kepler's law
M = E-esink, (18)
the relations between the true and eccentric anomaly v, and E,

_ cosE-e
cos v T T———————
- 1l-ecos E’

and

‘ (1-22)?sin E
sin v < f (19)
1-ecos E

and equations (19), the position of a satellite on an ellipse with a varyving shape

i given by,

. ad-ed 20)

1+ecosv

and

sin & = sini ° sin (v + w).

Here (v + o) is the true latitude, u,

The SGP is a general perturbations program whose basic theory is that of
Kozai. Its gravitational part is truncated to include only the effects of the first
three zonal harmonics of the Earth's potcntial. In addition, the final equations
of motion are cariied through the first order accuracy in terms of the small
parameter J,, the coefficient of the Earth's second zunal harmonic. Included
in the algorithm is a drag formulation which is based on the assumption that a
mean element set will have its time variation given by the first few terms of a

Taylor series.

PR .

Oty DSt e e .

e et aan

50 2N G N

Carst a1

NI R o




e =i}

ﬁ.ﬂi,v
/——~
S
—_—

19

The classical mean element input set includes the inclination i, right
agcension of the aspex;ding node O, eccenlricity Co argument‘ of perigee o,
mean anomaly M,, ard mean motion n;. After updating the mean elements for
first order secular «nd loﬁg period effects, the following quantities are calcu-

lated, which involve the position, velocity, and true latitude regpectively:

Lt “

r ° a(i-ecos E)

. Vea
r

e sin E

V HPy

rv = T
a : e sin E
sinu = —[sir(E+w)—a - a — ,
r yNSL xNSL ;
L 1+ y1- ef] :
and,
a e sin E
cosu = — |cos(E +w) - a + a.ye ———‘——] (21) .
r xNSL yNSL
[ 1+ yl - ef \

(E + o) is obtained from Kepler's equation by an iteration procedure, a and e

fnclude atmospheric perturbations,

pp ° a(l- 'ef)

2 2 2

e (a,nsL) * (aynsy)
B,nsL T € COS g

v

~——
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and

J3 a, ..
- sint,. (21a)

1
a = e sinw - - -
yNSL 50 2 J2 a (1 _ ez)

The suhscript, S0, and L, denote secular and long period effects, and a., the l
magnitude of the Earth's equatorial radius. !

The planetocentric distance, true latitude, ascending node, and inclination
are then corrected for short-period perturbations as follows:
2
= 5 Ly, = i 2
r r 4 2 PL sin 10 COSs u

. 1 al . ‘

! u = u- = J, 7 (7 cos*iy -~ 1) sin 2u |

8 P2 !

L !

) i

a, i E

: Q=QS°+‘:"J2'—;cosiosin2u :

' PL, i
i ,
l 4

i = ig + 4]2 P sin iy * 7os iy cos 2u (22) ;

L “ !

%

: : !

‘From these quantities, the osculating position and velocity can now be computed ,

{

E for a specified time. -!
g ’ The SGP is thus a first orde;r analytical approach which includes perturba- :
P tion effects thrbugh the Earth's third zonal harmonic. Although the theory is
not singular for any elliptic orbit, the position prediction is normally within

45 kilometers of the actual position between updated mean elements. It is this A J
point to which we address ourselves in the next section, in order to make SGP |

consistent with both the Kozai and Brouwv.cr approach. .
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I[I. FIRST ORDER SHORT PERIOD FORM OF THE SEMI-MAJOR AXIS
Adopting the form of the force function used by Vinti, (Reference 6), the
last, and dominant term of the short periodic contribution to the semi-major

axis (equations 17), can be written,

A2 3
—_ [(Q‘) sin? i]- cos 2u
a r

Q.
£
It

For short period effects, we can use the relation given by Tisserand (Refer-

encc 7),

ay 1 (a} 3/2
Ry m—

and conscquently, equations (23) and (17) become,

3 _ Jaal
2a (1 - 92)3/2

da, =

. [ein? i + cos 2ul. (24)
Let us now consider the short period contribution to the planetocentric
distance as given by equation (20). If ag a first approximaticn, we assume the
short period effects in the eccentricity to be smail, due to the presence of the
1/a? factor, then this parameter is composed of the mean, secular, and long

period effects, and let us designate this as ¢ . In addition, the ¢ccentricity can
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be considered as constant over short intervals of time. We then have that
da, - (1~ ¢?)
r . = . 25
sp . (1 te cosv) 25}
Over a period of revolution we have also that
LR e U—
2m 1, (1+ e cosv) (l-‘>eL ces v)
1
= - (1> e > 0). (26)
Vl - el_2
Substituting this result and equation (24) into (25), we obtain
2
3 a
fup = 302 5 sin®i ¢ cos 2u, @1

as the short period contribution of the semi-major axis to the planetocentric
distance of the sateilite. This result differs from the f{irst equation of (22), in
that the leading coefficient here is 3/2 instead of 1/4. This discrepancy, and
hence that of the corresponding semi-major, produces no significant change in

the SGP mean mean-motion when the orbit constants are chosen to produce a

best fit o observations. However, the factor of one quarter produces an incorrect

" instantaneous mean motion for the start of a power series or numerical inte-

gration, and a corresponding discrepancy in the mean mean-motion results,
Thus, equation (24) has the effect of resetting the sidereal clock for the satellite
orbit.
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To further modify the SGP, the changes in the semi-major axis and
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planetocentric distance ar=z then incerporated into the expressions for r and rv

of equations (21), by the inclusion of the short period effects in the velocity.

The velocity components are now calculated after the orbital parameters of

equations (22) are determined,

Following the approach of Kozai, and paralleling equations (10) and (11) of

Section II, since the mean value of the semi-major axis i taken to be

- 3
a'—‘@o{l-_ -"sinzi) l—ez},

then the following relation holds:

_ A, 3
n?a® = GM{1--— {1- —sin2%i 1-e2p,
p? 2

% &
T
[

[

from which,

r Az 3
Ezno{1+'—2'(l-;sin2i) l-ez}.
p .

Here,

where n, is the unperturbed or mean mean~motion provided by the two-line

element input. In our modified version of the SGP, we first calculate =

AT

(28)

(29)

(30)
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equution (30) above, and then utilize a and n from equations (28) and (29) together
as starting values for the mean semi-major axis and mean motion, whereas the
Space Defense Center SGP program utilizes a from equation (28) in conjunction

with the given value of the mean mean-motion, n,,.

IV. RESULTS
Table I is a comparison between the Space Defense Center SGP and

Goddard (932) SGP with a Brouv-er-Navigational Analysis Program (NAP)

. system involving real data from the OSCAR-7 satellite. This data is fitted with

Space Defense Center SGP analytic theory and published in the NASA Prediction
Bulletin number 87. The epoch of the data arc for bulletin 87 is, November 2,
16 hours, 47 minutes, 51.989856 seconds. The fitted orbital elements for this

bulletin are as foilows:

Inclination, i 101.6817 degrees

Right Ascension of the Ascending Node, 1 = 351.4182 degrees

Eccentricity, e = 0.0012030
Argument of Perigee, w = 269.8988 degrees
Mean Anomaly, M = 90.0660 degrees
. _ revolutions
Mean Motion, n, = 12.53311719 = day

‘4 .o Space Defense Center SGP, the Brouwer and Kozai methods, as well as
the Goddard .22 SGP programs employ basically the same fundamental theo-
retical approach to the satellite motion problem, as opposed for example, to
that of Vinti (Reference 6). While both SGP programs and Brouwer and Kozai,
all treat the periodic variations through first order, only the latter two account

for second order accuracy in the secular motions. This contrasts to the highly
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accurate,'non berturbation, separable Hamiltonian approach of Vinti which
carries all terms to a minimum of third order accuracy. In addition, both the
mean-motion and the short period form of the semi-major axis differ between
Space Defense Center and Goddard version of the SGP. In the létter program,
these quantities are expressed similar to those of Kozai, and in the case of the
OSCAR 6 and 7 satellites, this difference in the semi;major axis, yields an
initial discrepancy of approximately 'eight kilometers in position between the
Space Defense and Goddard 932 SGP at the epoch.

The primary differences between the Space Defense Center and Goddard
932 SGP methods can essentially be attributed then to the respective definitions
of the mean-motions, the corresponding mean and osculating semi-major axes,
and the resulting short period contribution to the planetocentric distance of the
satellite.

Tables IA and IB show the comparison of Cartesian coordinates at the
epoch of NASA Prediction Bulletin number 87. Differences in these coordinates

between the Space Defense SGP, the Goddard 932 SGP, and the Brouwer analytic

theory can be attributed to several causes. The Space Defense program calcu-
lation_s were fitted to the OSCAR 6 and 7 data. Since the two SGP i)rograms ai‘e
fundamentally similar io the theory of Brouwer, then there is sufficient reason
to warrant a second order term in the short period perturbation of the semi-
major major axis of the SGP version, as was done by Cohen and Lyddane

(Reference 8) for the Brouwer theory.

This i8 presently being undertaken by the authors. In addition, there is the

added sophistication of the Brouwer and Kozai methods, that is not present in
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either of the SGP calculations. In the former, the secular motions are developed

to second order, while in SGP, these terms are carried to first order only. The

comparison after three days is somewhat more striking, with the effect of the

mean-motion clearly evident. These results are listed in Tables IC and ID.
Very similar resulis were obtainad for the NASA Prediction Bulletins

96 and 276, and these are shown in Tables IT and III. Bulletias 87 and 96 are

specific epochs for GSCAR-7, and bulletin 276 relates to the ()SCAR—G

spacecraft.

AL G MG s TR ARSI R ARy R Y o T

BB e et



Table IA

Comparison of Cartesian Coordinates at the Epoch

of NORAD Bulletin Number 87

27

NORAD SPG Geddard 932 SGP Brouwer
X = 7743.753 km 7748.970 km 7748.569 km
y = ~1168.462 km ~1170.767 km -1169.135 km
oo | come km | 6515 i 0979 m
B -5;:“ -0.213 km/_s_ ‘-w:(_).216 km/s -0.213 km/s
B ¥ = B -1.428 km/s -1.427 km/s. -1.428 km/s
z = *6‘.;87 km/s 6-.;84 l;rn/é 6.984 km/s
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Table IB

Differences of Cartesian Coordinates at the Epoch

of NORAD Bulletin Number 87

— e

Brouwer-NORAD SGP Brcuwef-é&&iard 932 SGP
x| ams km | -0401 km
Ay = 0673 km | . 1632 km
Az = -0.240 km D ~7.494 km
B Ak = 0.00¢ km/s 0.003 km/s
Ay = 0.000 km/s o ~ =0.001 km/s
AAZ =WM -0:&?3 km/s ‘0(;00 km/s

e



Comparison of Cartesian Coordinates of the Fropagated State After 3 Days

For NORAD Bulletin Number 87

Table IC

NAP*

S e e e

NORAD SGP Goddard 932 SGP

- | 2401335 km | -1580.378 km | -1566.169 km
y = :2;;.918 ka #m:;_(m:z—z;cr;rﬁ -1408.339 km
z = 73407.;79 km 75:‘;;.”46_6;“- km‘e— 7539.555 km

B % = —-6.75;— km/s -6.950 km/s -6.946 km/s
y = 1007 wm/s | 0965 km/s | 0964 km/a
g = -2.021 km/s ~1.288 k;n/s_ t 1284 km/e

*These values are the result of the numerical integration by the NAP program of the Brouwcer epoch vectors.

These results agree with the propagated values provided by both the Vinti ar 4 Brouwer analytic orbit

theories.
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Differences of Cartesian Coordinates of the Propagated State After 3 Days

Table ID

For NORAD Bulletin Nuniver 87

NAP-NORAD SGP

MNAP-Goddard 932 &GP

Ax = 818.170 km““ N 3.209 | km

A-;= _123.421 km -1.539 km

Az = - 198.876 km B N 6.08% km

;354 = -0.193 km;;m W 0004 km/s
B Aﬂy =* —0.1-33 km/s -0.001 kra/s
h“__MA'Z = 0.737 km7x; ) 0.004 km/s
r -, ~- o
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Table IIA

Comparison of Cartesian Coordinates at the Epoch

of NORAD Bulletin Number 96

NORAD SGP Goddard 932 SGP Brouwer
6214.2i2 km $220.873 km 5213.100 km
y ——5854.361 km 3857.842 km 5853.035 km
z -0,731 _km 12,135 km -0.509 km
x 1.069 km/s 1.065 km/s 1.070 km/s
y -0.966 km/s -0.970 km/s -0.966 km/s
o )
z 6.980 km/s 6.97¢ km/s 6.984 km/s
. ~
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Table IIB
Differences of Cartesian Coordinates at the Epoch
of NORAD Bulletin Number 96

Brouwer~-NORAD SGP Brouwer-Goddard 932 S P
AX = -1.112 km ~7.773 km ]
Ay = -1.326 km -4.807 lum
Az = 0.222 km -12.644 xm
Ak = 0.001 km/s 0.005 km/s
Ay = 0.000 km/s 0.004 km/s
Az = 0.004 km/s 0.008 km/s
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Table IIC

Comparison of Cartesian Coordinates of the Propagated State After 1 Day

PR g &

For NORAD Bulletin Nu nber 96

NAP*

| k=

NORAD ~SPG Goddard 332 SGP
~ 7~x :v— 64.828“”‘”‘.(;!1.7;“-7 276.813 krnw | 2é6.782 km
y = ~2294.326 km A-:'2066.49;w“k1n | *A—-2078.811 km _
z = 7470.485‘. l;m .—mrr~‘~7-5~3;".‘5-é‘(; ;{;mm | «;géé.645 km
X = ~4.783 !(rr;;-sd -;;;6 km/s it;.773 km/s
g- | 5087 kmss | 5165 km/s | -5.061 km/s
- = ~1.526 km/_:““_ ~1.250 km/smi -1.256 km/s

*Thesc values are the result of the numerical integration by the NAP program of the Brouwer epoch vecters,
These results agiee with the propagated values provided by both the Vinti and Brouwer analytic orbit

theories.
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Differences of Cartesian Coordinates of the Propagated State After 1 Day

Table IID

34

For NORAD Bulletin Number 96
NAP—NORA‘IS‘;é;<"—.“. A“hul:l;il;-_(-k:cvl;;rd 932 SGP
ax = 201954 km |  -10.031 km
Ly = 215.515 km— —12314 | km
pz - 62,160 km +2.065 tm
ok = 0010 tkmss 0.003 kea/s
Ay = -0.074 —‘km/s T 0.005 km/s
Az = 0.270 k;;x;s;v -0.006; km/s
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Table IIIA
Comparison of Cartesian Coordinates at the Epoch
of NORAD Bulletin Number 276
NORAD SGP Goddard 932 SGP Brouwer
X = 7605.185 km 1612.355 km 7600.206 Ik
y = 1892.096 km 1890.996 km 1888.018 km
s - e . _
z = -0.727 km 12.926 km 12.713 km
S T i
X = 0.338 km/s 0.332 km/s 0.333 km/s
y = ~1.390 km/s -1.390 km/s -1.393 km/s
g = 6.986 km/s 6.982 km/s 6.993 km/s
e —— — T
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Table IIB
Differences of Cartesian Coordinates at the Epoch
of NORAD Bulletin N imber 276
Brouwer-NORAD SGP Brouwer-~Goddard 932 SGP

AX -4.979 km -12,149 km
by -4,078 km ~2.978 km
Az, 13.440 km -0.213 km
a8 4 -0.005 km/s +0.001 km/s
Ay -0.003 km/s -0.003 km/s
Az 0.007 km/s 0.011 km/s

) 4 / ’i/"'\'.
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Table IIC

Comparison of Cariesian Coordinates of the Propagated State After 6 Days

For NORAD Bulletin Number 276

NORAD SGP Goddard 932 SGP NAP*
X = 6828.173 km 7277.146 km :7267.588 km
y = 1644.624 km 2;£8;2-5 km 2113.978 km B
z = 3464.997 km 2010.906 km 201;3.454 km
x = ~-2.625 km;s -1.306 km/s -;.311 km/s
y = -2.274 km/s -1.921 km/s -1.524 km/s
z = 6.233~km/s 6.739 km/s é:;;s km/s

*These values are the result of the numerical integration by the NAP program of the Brouwer e¢pi.ch vectors.
Taese results agree with the propagated values provided by both the Vinti and Brouwer analytic orbit
theories.
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Table IIID
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Differences of Cartesian Coordinates of the Propagated State After 6 Days

For NORAD Bulletin Number 278

NAP-NORAD £GP

NAP-Goddard 932 SGP

~-9.558 km

= 439.415 km
. SR S
Ay = 469.354 km -4.347 km
Az = -1451.543 km 2.548 km
Ak = 1.314 km/s -0.005 km/s
Ay = 0.350 km/s -0.003 km/s
AZ = 0.513 km/s 0.007 km/s
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V. CONCLUSIONS

The inclusion of the full first order short period effects in the semi-major
axis and corresponding planetocentric distance in the SGP anaslytic theory, gives
a good instantaneous mean motion for the start of the Navigational Analysis
numerical integration program. It has also been shown by Lyddane and Cohen
(Reference 8), that in the case of a2 program such as Brouwer, the operation
of usiné osculating elements to tra;;sf-er the orbit computations to special per-
turbations, or even to another general perturbation, has the additional require-
ment for the semi-major axis to be of second oruer in short period terms.
Hence, such a transformation would be of great value in eliminating any secular
discrepancy.

Finally, the mean value of mean motion, as well as the semi-major axis
are redefined in accordance with the relationship given by Kozai. The resulting
modified version of the SGP is found to agree much more closely both at epoch
and in the prediction mode, with the Brouwer Analytic Theory and the Naviga-

tional Analysis (numerical integration) Program.

VI. ACKNOWLEDGEMENTS
Mr. John S. Watson of the Goddard Space Flight Center carried out some
of the numerical computations. Mr. R. A. Gordon of the Goddard Space Flight

Center took part in several useful discussions about the work.
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Table IIIB

Differences of Cartesian Coordinates at the Epoch

of NORAD Bulletin N imber 276

Brouwer-NORAD SGP

Brouwer-Goddard 932 SGP

AX -1.979 km -12.149 km
oy B —4.0:8“ ml_cm ~-2.978 km
Az - 13.4‘;(; km -0.213 km
Ajc -0.005 km/s 40,001 km/s
Ay —0.0;);3 km/s -06.003 km/s
Az - 0.007 km/s 0.011 km/s

e
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Table MIC

Comparison of Cartesian Coordinates of the Propagated State After 6 Days

For NORAD Bulletin Number 276

ﬂN;)#RAD scip Goddard 932 SGP NAP+
B X = 6828.173 km 727‘7-.—1-42 km M;zgei.sss km
y = 1644.624 km “—2115.325 km 2113.978 km B
V z = 3464.997 km 2010.906 km 20;:;,.454 km
X = -2.625 km/s -1.306 km/s L;1.311 km/s
y = -2.274 km/s -1.921 km/s -1.924 km/s
z = B 6.233 km/s 6.739 km/s i —w“6t746 km/s

*These valucs are the result of the numerical integration by the NAP program of the Brouwer cpt.ch vectors.

These results agree with the propagated values provided by both the Vinti and Brouwer analytic orbit
theories.
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Differences of Cartesian Coordinates of the Propagated State After 6 Days

PO

Table IIID

For NORAD Bulletin Number 278

439.41

VOGRS OO S

NAP-NORAD £GP

km

Ay = 469.354 k; o :A-_4.347 km
Az - Cuas1543 km | 2518 km
Ax = 1.314 km/; ____ N -.:;)705 | 7km/s
7Ay = 0.350 km/s N “:07.0‘03 ”l-cm/s
Az = o 07:5‘13 km/s (;007 icx;r\/s.
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V. CONCLUSIONS

The inclusion of the full first order short' period effects in the s'emi—majorA
axis and corresponding planetocentric distance in the SGP analytic theory, gives
a good instantaneous mean motion for the start of the Navigational Analysis
numerical integration program.’ It has also heen shown by Lyddane and Cohen
{Reference 8), that in the case of a program such as Brouwer, the operation
of using osculating elements to tré;qsfer the orbit computations to special per~
turbations, or even to another general perturbation, has the additional require-
ment for the semi-major axis to be of second oruer in short period terms.
Hence, such a transformation would be of great value in eliminating any secular
discrepancy.

Finally, the mean value of mean motion, as well as the semi-major axis
are redefined in accordance with the relationship given by Kozai. The resulting
modified. version of the SGP is found to agree much more closely both at epoch
and in the prediction mode, with thie Brouwer Analytic Theory and the Naviga-

tional Analysis (numerical integration) Program.

VI. ACKNOWLEDGEMENTS
Mr. John S. Watson of the Goddard Space Flight Center carried out some
of the numerical computations. Mr. R. A. Gordon of the Goddard Space Flight

Center took part in several useful discussions about the work.
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